

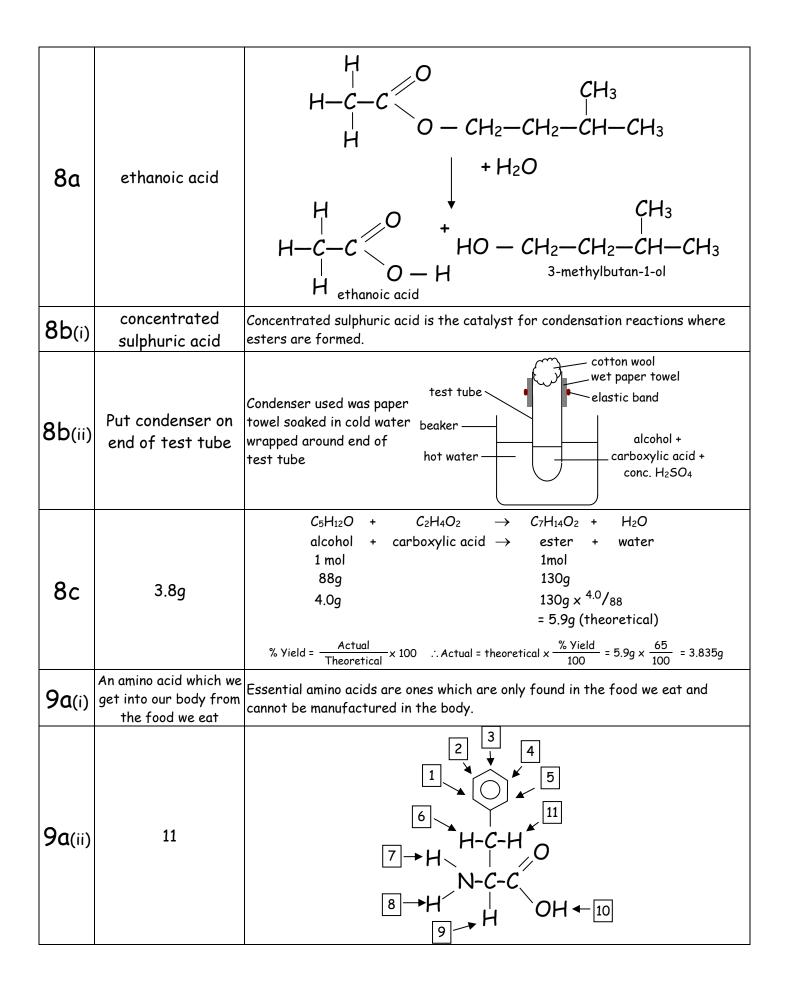
2007 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	76+	30.4%
В	62+	24.0%
С	48+	22.0%
D	41+	9.6%
No award	<41	14.2%

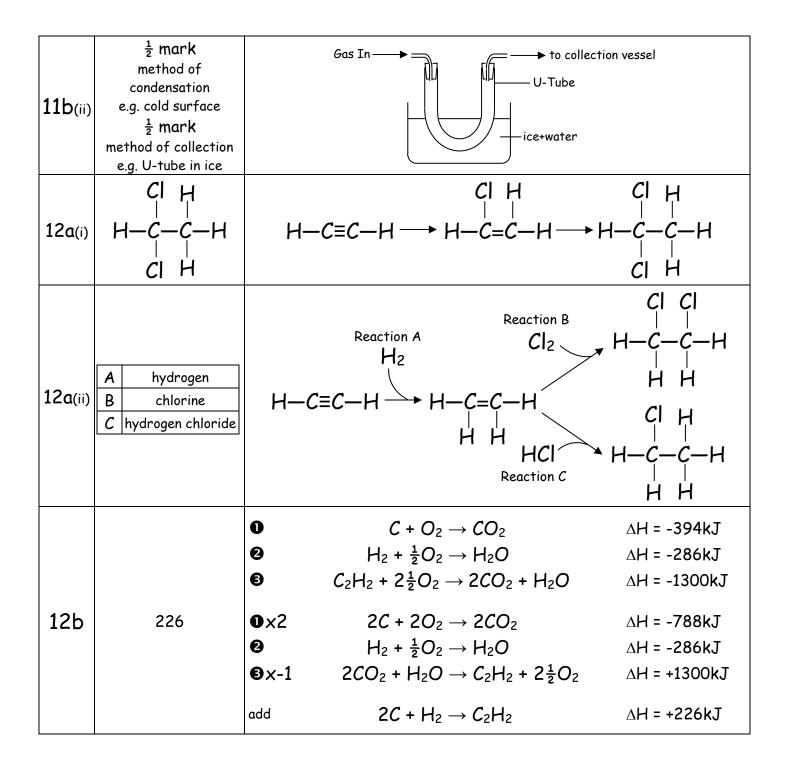
Section:	Multiple Choice		Extended Answer	
Average Mark:	26.4	/40	36.5	/60

	2007 Higher Chemistry Marking Scheme				
MC Qu	Answer	% Pupils Correct	Reasoning		
1	В	63	 ☑A Iron is a transition metal but oxygen is not a halogen as it is group 6 ☑B Silver is a transition metal and bromine is a group 7 halogen ☑C Group 1 potassium is not a transition metal and permanganate is not a halogen ☑D Copper is a transition metal but iodate is not a halide due to -ate ending 		
2	A	84	☑A Potassium fluoride is ionic so conducts when molten but not as a solid ☑B Argon has only London dispersion forces so no conduction in any state ☑C Potassium conducts in both solid and liquid states as it is a metal ☑D tetrachloromethane (CCl4) is covalent so does not conduct in any state.		
3	D	59	 ☑A Electron Arrangements: Na⁺ = 2,8 S²⁻=2,8,8 ☑B Electron Arrangements: Mg²⁺ = 2,8 Cl⁻=2,8,8 ☑C Electron Arrangements: K⁺ = 2,8.8 Br⁻=2,8,18,8 ☑D Electron Arrangements: Ca²⁺ = 2,8,8 Cl⁻=2,8,8 		
4	C	86	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{0.20 - 0.05}{20 - 0} = \frac{0.15}{20} = 0.0075 \text{ mol } l^{-1} \text{ s}^{-1}$		
5	С	68	 ☑ A +30kJ mol⁻¹ (P to top of hill) is the activation energy for the reverse reaction ☑ B +10kJ mol⁻¹ (R to P) is the enthalpy change for the forward reaction ☑ C -10kJ mol⁻¹ (P to R) is the enthalpy change for the reverse reaction ☑ D -40kJ mol⁻¹ (top of hill to R) is the negative of the forward activation energy 		
6	В	78	The enthalpy of neutralisation: the energy released when one mole of water is formed. For acid/metal hydroxide neutralisations, the formation of one mole of water happens to be equal to the neutralisation of one mole of H ⁺ ions but this is not the case for acid/metal oxide neutralisations or acid/metal carbonate neutralisations.		
7	С	70	 A X₂ is not in the gaseous state and covalent bond in X₂ must be broken first B 1st Ionisation energy forms positive ions not negative ions C The removal of 1 mol of electrons from 1 mol of atoms in the gaseous state D 1st Ionisation energy forms positive ions not negative ions 		
8	A	53	Least ionic character = elements with lowest electronegativity difference ☑A Electronegativity: Be=1.5 and Cl= 3.0 ∴ electroneg difference = 3.0-1.5 = 1.5 ☑B Electronegativity: Ca=1.0 and Cl= 3.0 ∴ electroneg difference = 3.0-1.0 = 2.0 ☑C Electronegativity: Li=1.0 and Cl= 3.0 ∴ electroneg difference = 3.0-1.0 = 2.0 ☑D Electronegativity: Cs=0.8 and Cl= 3.0 ∴ electroneg difference = 3.0-0.8 = 2.2		
9	D	58	 ☑ A Barium chloride is ionic (polar) ∴insoluble in non-polar tetrachloromethane ☑ B Caesium chloride is ionic (polar) ∴insoluble in non-polar tetrachloromethane ☑ C Calcium chloride is ionic (polar) ∴insoluble in non-polar tetrachloromethane ☑ D Phosphorus chloride is non-polar covalent∴ soluble in non-polar tetrachloromethane 		
10	A	63	 ☑A sulphur dioxide SO₂ has discrete covalent molecules (boiling point = -10°C) ☑B silicon dioxide SiO₂ is a covalent network (melting point = 1610°C) ☑C aluminium oxide Al₂O₃ is ionic ∴ has ionic lattice structure rather than molecules ☑D iron (II) oxide FeO is ionic so has ionic lattice structure rather than molecules 		
11	С	26	 A Oxides of metallic elements are ionic so oxides must be solid at room temp B Elements cannot be polar covalent as there is no difference in electronegativity C element with mpt=3000°C is covalent network with non-polar covalent bonds as each atom in the substance has the same electronegativity D Elements cannot have ionic bonding within them 		

10		10	☑A CO₂ molecules are non-polar due to linear shape cancelling out polarity ☑B NH₃ molecules are polar due to electronegativity and pyramidal shape
12	В	68	☑C CCl₄ molecules are non-polar due to tetrahedral shape cancelling out polarity
			D CH4 molecules are non-polar due to similar electronegativities of C and H
			1 CO2 molecule contains 2 oxygen atoms
13	C	55	∴ 1 mol CO2 molecules contains 2 mol of O atoms
	Ŭ		\therefore 0.5 mol CO2 molecules contains 1 mol of O atoms
	•		gfm of C_{60} molecule = 60x12 = 720g
14	A	39	1 mol C_{60} = 720g = 6.02×10 ²³ molecules
	•••		$12g = 6.02 \times 10^{23}$ molecules $\times \frac{12}{720} = 1.0 \times 10^{22}$ molecules
			$\blacksquare A \text{ 1mol } O_2 = 32g \qquad \therefore 16g \text{ of } O_2 \text{ contains } 0.5 \text{ mol of } O_2 \text{ molecules}$
15	В	68	B 1mol Ne = 20.2g ∴ 1 mole Ne atoms present
10	U		■ C 1 mol NaOH = 40g 20g NaOH contains 0.5 mol of NaOH formula units
			■D 1mol Na ⁺ Cl ⁻ f.u. = 58.5g : 2mol of ions present in 1 mol of Na ⁺ Cl ⁻ formula units
			$C_{3}H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_{2}O_{(l)}$
	-	/	1 mol 5 mol 3 mol 4 mol
16	С	56	1vol5vol3volnegligible vol30cm3150cm390cm3-
	•		(∴50cm ³ O₂ leftover)
			Total volume of resulting gas = $90 \text{ cm}^3 CO_2 + 50 \text{ cm}^3$ of leftover $O_2 = 140 \text{ cm}^3$
			$nCO + (2n+1)H_2 \rightarrow nH_2O + hydrocarbon$
			Multiply out brackets
			$nCO + 2nH_2 + H_2 \rightarrow nH_2O + hydrocarbon$
			Separate out H_2 which forms H_2O
17		50	$nCO + nH_2 + nH_2 + H_2 \rightarrow nH_2O + hydrocarbon$
1/	D	50	Cancel out water
			$nC + nH_2 + H_2 \rightarrow + hydrocarbon$
			Build hydrocarbon into general formula
			$C_nH_{2n} + H_2 \rightarrow Hydrocarbon$
			$C_nH_{2n+2} = Hydrocarbon$
			A straight chains decrease efficiency as they fit closely together and cause
10	٨	00	auto-ignition before the spark
18	A	80	B branches help keep molecules far enough apart to prevent auto-ignition
			EC cyclo- rings help keep molecules far enough apart to prevent auto-ignition 図D aromatic rings help keep molecules far enough apart to prevent auto-ignition
			☑A Functional group is of an aldehyde
			EB Functional group is of a ketone
19	A	/1	SC Functional group is of a carboxylic acid
			ND Functional group is of an ester
			🗷 A Dehydration of propan-2-ol produces only propene
20	^	66	B Dehydration of pentan-3-ol produces only pent-2-ene
20	C	66	☑C Dehydration of hexan-3-ol produces hex-2-ene and hex-3-ene
			ED Dehydration of heptan-4-ol produces only hept-3-ene
			\blacksquare A Oxidation: Primary Alcohol \rightarrow Carboxylic Acid
21	(65	■ B Oxidation: Secondary Alcohol → Ketone
61	C		✓C Reduction: Ketone → Secondary Alcohol
			\blacksquare D Oxidation: Aldehyde \rightarrow Carboxylic Acid
			🗷 A Aldehydes do not react with alkali
22	В	B 76	B Carboxylic Acids react with alkalis to form salt + water
22			EC Ketones do not react with alkali
1			🗷 D Alcohols do not react with alkali


23	D	86	 A Carbon dioxide causes the Greenhouse Effect and Carbon monoxide is poisonous B Unburnt hydrocarbons like benzene can cause health problems like cancers C Sulphur dioxide causes acid rain D Chlorofluorocarbons (CFCs) causes the breakdown of ozone 		
24	В	56	 A Propane does not have a C=C double bonds to react by addition reaction B Cracking makes smaller molecules and produces C=C double bonds C Propane does not have a C=C double bonds to react by hydrogenation reaction D Propane does not react by oxidation reaction 		
25	D	60	 A Linear polyester fibres are used in textile fibres not cured polyester resins B Linear polyester fibres are long straight molecules and not used in cured resins C Polyester is formed by a condensation polymerisation reaction C Cured resins are strong due to their 3D cross-linked structure 		
26	D	87	Glycerol is also known as propane-1,2,3-triol. propane-1,2,3-triol. 3 carbon mainchain with C-C single bonds Glycerol is also known as propane-1,2,3-triol. Functional groups in carbons C ₁ , C ₂ and C ₃ -OH groups		
27	С	91	Enzymes are made of protein. Protein is the polymer formed from the condensation polymerisation of amino acid monomer units.		
28	В	64	 D -NH2 and -COOH groups are not attached to the same carbon Image: C -NH2 and -COOH groups are not attached to the same carbon Image: C -NH2 and -COOH groups are not attached to the same carbon Image: D -NH2 and -COOH groups are not attached to the same carbon 		
29	A	72	 A Benzene has to be purified from crude oil and is not found naturally by itself B Water is a widely available raw material C Iron ore (iron oxide) is dug out of the ground to be used in a blast furnace D Sodium chloride (salt) is extracted out of the ground for its many uses. 		
30	С	81	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
31	С	82	 A Catalysts increase the rate of the forward and reverse reactions B Catalysts increase the rate of the forward and reverse reactions C Catalysts increase the rate of the forward and reverse reactions C Catalysts do not change the position of equilibrium 		
32	В	80	 ☑ A Forward reaction: 2mol gas → 1mol gas ∴ forward reaction decreases pressure ☑ B Forward reaction: 2mol gas → 2mol gas ∴ no change in pressure ☑ C Forward reaction: 4mol gas → 2mol gas ∴ forward reaction decreases pressure ☑ D Forward reaction: 3mol gas → 2mol gas ∴ forward reaction decreases pressure 		
33	D	67	 ☑A Aldehyde groups (-CHO) do not ionise to become acidic ☑B Hydroxyl groups (-OH) do not ionise to become acidic ☑C C-H groups do not ionise to become acidic ☑D Carboxyl groups (-COOH) do ionise (-COO⁻) and release H⁺ (acid) 		
34	С	73	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
35	A	45	Lemon Juice: pH= 3 \therefore [H ⁺] = 10 ⁻³ mol l ⁻¹ pH=3 \rightarrow pH=5 is a decrease in concentration of H ⁺ by a factor of 100 Lemon Juice : Apple Juice 100 : 1		

			pH: Sodium hydroxide has a higher pH than ammonia solution as sodium hydroxide is
			fully dissociated and all OH ⁻ ions are released into solution. In ammonia, there is
36	B	61	only partial dissociation of OH ⁻ ions hence the lower pH of ammonia
		U -	<u>Conductivity</u> : Sodium hydroxide has more ions present and therefore has a higher
			conductivity than partially dissociated ammonia solution
			Write down the main species involved in the reaction
			$IO_3^- \rightarrow I_2$
			Balance all atoms except O and H
			$2IO_3^- \rightarrow I_2$
~7	~	EE	Add H_2O to other side to balance O atoms
37	D	55	$2IO_3^- \rightarrow I_2 + 6H_2O$
			Add H^{\star} ions to other side to balance H atoms
			$2IO_3^- + 12H^+ \rightarrow I_2 + 6H_2O$
			Add e ⁻ to most positive side to balance charge
			$2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$
		A 55	$\square A$ Redox: Oxidation Step: Mg \rightarrow Mg ²⁺ + 2e ⁻ and Reduction Step: 2H ⁺ + 2e ⁻ \rightarrow H ₂
38	Δ		B Neutralisation reactions do not involve the transfer of electrons
50			C Neutralisation reactions do not involve the transfer of electrons
			D Neutralisation reactions do not involve the transfer of electrons
			Number of protons = atomic number = 38
39	$\boldsymbol{\mathcal{C}}$	57	Number of neutrons = mass number - atomic number = 90 - 38 = 52 Neutron : Proton
22	C	57	52 : 38
			1.37 : 1
			Alpha Particles are positive :. attracted towards negative plate (Path X)
40	D	N 72	Beta Particles are negative \therefore attracted towards positive plate (Path Z)
		1 4	Gamma Rays have no charge : travel straight through (Path Y)


	2007 High	er Chemistr	y Markin	g Schem	e
Long Qu	Answer		Reasonin	g	
1a	electronegativity	- .	Side of the Periodic	the attraction for electrons within a bond. of the Periodic Table have a higher nts on the Left Hand Side.	
1b	decreases	As you go across a period fro the nucleus having a larger po shell more.	-	•	
1c	Electrons in potassium are further away from nucleus (1mark) Inner electron shells have shielding effect on outer shell (1mark)	 outer electron is jurifier from) reduce the attraction betw		
2a	Reforming	Reforming rearranges the ca hydrocarbons. The number o Straight chains can be refor	bons from straight carbons in the mole	chain to branched ch cule does not change	nain 2.
2b	H H H-C-C-C H H	Primary Alcohol – Propan-1-ol C4H9OH (C3H8O)	→ Aldehyde – Propanal C2H5CHO (C3H6O)	→ Carboxylic Aci Propanoic Aci C ₂ H ₅ COOH (C ₃ H ₆ O ₂)	
2c	Bullet-Proof Vests	Kelvar is a very strong plastic. Other acceptable answers: making ropes, making jackets for fencers, making clothing for motorcyclists, in aircraft wings, to line aircraholds, in car tyres, body armour or kayaks			
3a	$^{3}_{1}H \rightarrow ^{3}_{2}He + ^{0}_{-1}e$	Radiation Type Effe Alpha Beta Gamma	t on Atomic Number decrease by 2 increase by 1 no change	Effect on Mass Numbe decrease by 4 no change no change	
3 b(i)	Tritium is being replaced as fast as it is decaying	Tritium is formed in the uppe evolved over a long period of balanced by the rate of deca	r atmosphere by cos time so that the rat	mic rays. An equilibr	
		Percentage Remainir		ning Time Taker	1
		100%	1	0 years	
3b(ii)	36.9 years	50%	$\frac{1}{2}$	12.3 year	S
•••()	,	25%	$\frac{1}{4}$	24.6 year	'S
1		12.5%	<u>1</u> 8	36.9 year	
4 a(i)	Synthesis Gas	Synthesis gas is a mixture of steam reforming of methane	I		
4a(ii)	4	$\begin{array}{cccc} \bullet & CH_4 + H_2O & \rightarrow & CO + 3H_2 \\ \bullet & CO + H_2O & \rightarrow & CO_2 + H_2 \\ & & & & & & \\ & & & & & & \\ & & & & $			
		Hydrogen ions (H⁺) are positi			بالمالية المراجع

4 b(ii)	Time (½mark) Volume of Hydrogen (½mark)	$(\frac{1}{2}mark)$ olume of ydrogen by the calculation Q = I x t. The volume of hydrogen is required to calculate the proportion of 1mole of hydrogen has been formed.		
5a	Endothermic	Endothermic reactions absorb energy from its surrounding and the temperature of the surroundings decreases as a result.		
5b	53.8	$\Delta H = 45 \text{kJ} \text{ mass of water} = 0.2 \text{kg} \text{ c} = 4.18 \text{ kJ kg}^{-1} \text{ °C}^{-1} \text{ (p22 databooklet)}$ $\Delta H = \text{cm} \Delta T \Delta T = \frac{\Delta H}{\text{c x m}} = \frac{45}{4.18 \times 0.2} = 53.8 \text{ °C}$		
6a (i)	purple $ ightarrow$ colourless	Permanganate MnO4 ⁻ ions are purple and present at the start of the experiment. Permanganate MnO4 ⁻ ions react with oxalate ions and become colourless Mn ²⁺ ions.		
6a (ii)	the temperature may continue to change/rise when you stop heating	Other acceptable answers: Temperature measured during heating is only roughly measured or the temperature may continue to rise (change) when you stop heating or the temperature at the end is measured accurately or there might be a time delay between heating and carrying out the experiment or during heating, the temperature of the solution may rise too quickly or because the temperature goes up when you add the oxalic acid or addition of the oxalic acid may cool the solution		
6b	Many more molecules have energy greater than activation energy.	Curve moves to right as temperature increases. E _A remains the same value. Other acceptable answers: more molecules (particles) have enough energy to collide successfully or more molecules have sufficient energy to react or more molecules with (kinetic) energy greater than the activation energy		
7a	Magnesium hydroxide is insoluble and can be filtered	Magnesium hydroxide is insoluble in water (p21 of data booklet) Calcium chloride is soluble in water (p21 of data booklet)		
7b	Neutralisation	ACID + ALKALI → SALT + WATER hydrochloric + magnesium acid + hydroxide → magnesium chloride + water		
7c	Chlorine can be recycled (1 mark) Sea water is cheap (1 mark)	 Any 2 from: Indication that the chlorine produced can be recycled water from the neutralisation can be recycled 		
7d	1.5kg	$Q = I \times t = 200\ 000 \times (1\times60) = 12\ 000\ 000\ C$ $Mg^{2+} + 2e^{-} \longrightarrow Mg$ $1mol \qquad 2mol \qquad 1mol$ $2\times96500C \qquad 24.3g$ $193000C \qquad 24.3g \times \frac{12\ 000\ 000}{193000}$ $= 1511g$ $= 1.511kg$		

7

9b	0 - C - N - H	 The peptide link and the amide link are structurally the same. Peptide links are formed between amino acids by condensation polymerisation during production of a protein Amide links are formed in plastics like nylon 		
9с	Diagram showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
10a	Experiment 2 Initial gradient steeper levels off at same height as line 1 Experiment 3 Initial gradient less steep Levels off at half height of line 1	ExperimentDescriptionReasoning2Initial gradient steeperExperiment 2 has a higher concentration of sulphuric acid2levels off at same height as line 1Both experiments have 0.01mol of sulphuric acid present3Initial gradient less steep Levels off at half height of line 1Although both acids have same volume and concentration, HCl has half as many H ⁺ ions present due to formula of H2SO4		
10b	0.26g	no. of mol H ₂ SO ₄ = volume × concentration = 0.1 litres × 0.1 mol t ⁻¹ = 0.01 mol $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$ 1 mol 1 mol 0.01 mol 0.01 mol gfm Mg = 24.3g mass = no. of mol × gfm = 0.01 mol × 24.3g mol ⁻¹ = 0.243g Magnesium unreacted = total magnesium - magnesium reacted = 0.5 g - 0.243g = 0.257g		
11a (i)	$2NH_3 + 2\frac{1}{2}O_2$ \downarrow $2NO + 3H_2O$	$2NH_3 + 2\frac{1}{2}O_2 \rightarrow 2NO + 3H_2O$ or $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$		
11a (ii)	Catalyst is in different state from reactants	Type of CatalystDefinitionHomogeneousCatalyst is in samestate as reactantsHeterogeneousCatalyst is in different state from reactants		
11a (iii)	Yield of NO2 increases	 Reaction Mixture is cooled system fights back to raise temperature exothermic reaction (forward reaction) is favoured rate of forward reaction increases to make more products Yield of product (NO₂) increases 		
11b(i)	0.51 litres	$\begin{array}{l} \label{eq:gfm} gfm \ Cu(NO_3)_2 = (1x63.5) + (2x14) + (6x16) = 63.5 + 28 + 96 = 187.5g \\ no. \ of \ mol = \ \frac{mass}{gfm} = \ \frac{2.0g}{187.5 \ g \ mol^{-1}} = 0.0107 \\ mol \qquad 1mol \qquad 1mol \qquad 2mol \\ 0.0107 \\ mol \qquad 0.0213 \\ mol \qquad 0$		

13a	Answer to include:	 1st Mark: Hydrogen bonds (¹/₂mark) are strong between molecules (¹/₂mark) 2nd Mark: Hydrogen bonding is formed due to: the difference in the electronegativity of N and H atoms (¹/₂mark) N-H covalent bonds are very polar (¹/₂mark) 	
13b(i)	Addition or Hydrogenation	Addition of hydrogen across C=N double bond • C=N double bond splits to become C-N single bond • Hydrogen atoms add across former C=N double bond H = H = H = H = H = H = H = H = H = H =	
13b(ii)	НННН Н -	$\begin{array}{cccccccc} H & H & H & H & H & H & H & H & H & H $	
14a	To increase the melting point of product or to turn oil into solid margarine O ils have $C=C$ double bonds which changes the shape of the molecules cannot get so close together allow the liquid oil to be a solid. By adding hydrogen across $C=C$ double bond, molecules becomes a solid.		
14b	Sorbic acid is a weak acid	Potassium sorbate is alkaline. Alkaline salts contain a weak acid when the salt is made (potassium hydroxide reacting with sorbic acid)	
14c	1.78	gfm Na ⁺ = 23g no. of mol = $\frac{mass}{gfm} = \frac{0.7}{23} = 0.0304$ mol 1mol of Na ⁺ ↔ 1 mol of NaCl 0.0304mol 0.0304mol gfm NaCl = (1x23) + (1x35.5) + 23 + 35.5 = 58.5g mass = no. of mol × gfm = 0.0304mol × 58.5 g mol ⁻¹ = 1.78g	
15a	$H_2O_2 + 2H^+ + 2I^-$ \downarrow $2H_2O + I_2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
15b	0.00945	no. of mol S ₂ O ₃ ²⁻ = volume × concentration = 0.005litres × 0.0149mol l ⁻¹ = 7.45 × 10 ⁻⁵ mol $2Na_2S_2O_3 + I_2 \longrightarrow 2NaI + Na_2S_4O_6$ 2mol 1mol 7.45×10 ⁻⁵ mol 3.725×10 ⁻⁵ mol gfm I ₂ = (2×1276.9) = 253.8g mass = no. of mol × gfm = 3.725×10 ⁻⁵ mol × 253.8g mol ⁻¹ = 0.00945g	